Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine.

نویسندگان

  • John B Bruning
  • Ana C Murillo
  • Ofelia Chacon
  • Raúl G Barletta
  • James C Sacchettini
چکیده

D-alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 Å. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoined by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC(50)) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolomics Reveal d-Alanine:d-Alanine Ligase As the Target of d-Cycloserine in Mycobacterium tuberculosis

Stable isotope-mass spectrometry (MS)-based metabolomic profiling is a powerful technique for following changes in specific metabolite pool sizes and metabolic flux under various experimental conditions in a test organism or cell type. Here, we use a metabolomics approach to interrogate the mechanism of antibiotic action of d-cycloserine (DCS), a second line antibiotic used in the treatment of ...

متن کامل

Correction to Reinterpreting the Mechanism of Inhibition of Mycobacterium tuberculosisd-Alanine:d-Alanine Ligase by d-Cycloserine

d-Cycloserine is a second-line drug approved for use in the treatment of patients infected with Mycobacterium tuberculosis, the etiologic agent of tuberculosis. The unique mechanism of action of d-cycloserine, compared with those of other clinically employed antimycobacterial agents, represents an untapped and exploitable resource for future rational drug design programs. Here, we show that d-c...

متن کامل

Roles of Mycobacterium smegmatis D-alanine:D-alanine ligase and D-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor D-cycloserine.

D-Cycloserine (DCS) targets the peptidoglycan biosynthetic enzymes D-alanine racemase (Alr) and D-alanine:D-alanine ligase (Ddl). Previously, we demonstrated that the overproduction of Alr in Mycobacterium smegmatis determines a DCS resistance phenotype. In this study, we investigated the roles of both Alr and Ddl in the mechanisms of action of and resistance to DCS in M. smegmatis. We found th...

متن کامل

Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d-Cycloserine in mycobacteria.

d-Cycloserine is an effective second line antibiotic used as a last resort to treat multi (MDR)- and extensively (XDR) drug resistant strains of Mycobacterium tuberculosis . d-Cycloserine interferes with the formation of peptidoglycan biosynthesis by competitive inhibition of alanine racemase (Alr) and d-alanine-d-alanine ligase (Ddl). Although the two enzymes are known to be inhibited, the in ...

متن کامل

Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis

The increasing global prevalence of drug resistance among many leading human pathogens necessitates both the development of antibiotics with novel mechanisms of action and a better understanding of the physiological activities of preexisting clinically effective drugs. Inhibition of peptidoglycan (PG) biosynthesis and cross-linking has traditionally enjoyed immense success as an antibiotic targ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2011